Ученые нашли наиболее эффективную систему для создания чистых пептидных антибиотиков
Ученые нашли наиболее эффективную систему для создания чистых пептидных антибиотиков
Устойчивость бактерий к антибиотикам выросла на 40% за последние пять лет. По данным ВОЗ, каждая шестая бактериальная инфекция в мире не поддается лечению, ежегодно унося около 5 миллионов жизней. Мы рискуем вернуться в эпоху, когда обычная пневмония или заражение крови могли стать смертельным приговором. Появился способ обмануть бактерии, ставшие неуязвимыми для антибиотиков. Новые «зеркальные» пептидные антибиотики остаются невидимыми для защиты микробов. Но есть сложность: чтобы быть эффективным и безопасным, лекарство не должно содержать примесей знакомых патогенам молекул. Ученые Пермского Политеха нашли решение этой проблемы, протестировав различные системы и выбрав наиболее эффективную. Она разделяет молекулы всего за десять минут. Этот подход позволяет создавать невидимые для бактерий антибиотики, повышать эффективность лечения и снижать риск побочных эффектов.
Мы живем в эпоху, когда величайшее медицинское открытие XX века теряет свою силу. Антибиотики, спасшие сотни миллионов жизней, отступают под натиском невидимого врага — бактериальной устойчивости. По оценкам экспертов, в ближайшие 25 лет супербактерии могут унести до 40 миллионов. Пока человечество не осознает масштаб угрозы, она продолжает неуклонно расти.
Чтобы понять, почему антибиотики перестают действовать, нужно знать, как они работают. Большинство препаратов находят в бактериальной клетке конкретную мишень — например, нарушают строительство клеточной стенки или блокируют жизненно важные процессы. Но бактерии постоянно изменяются, обмениваются генами устойчивости и находят новые способы защиты. Когда бактерия меняет форму своей мишени, антибиотик перестает ее «узнавать» и становится бесполезным. Так рождаются супербактерии, против которых современная медицина часто бессильна.
В этой ситуации особое значение приобретают пептидные антибиотики — сложные молекулы, чья структура повторяет строение природных соединений. Изначально такие молекулы обнаружили в живых организмах — многие бактерии, грибы и животные производят короткие белковые цепочки (пептиды) для защиты от микробов. В отличие от традиционных препаратов, которые действуют точечно, пептидные антибиотики нарушают фундаментальные структуры бактериальной клетки. Они способны разрушать внешнюю защитную оболочку микроба, что приводит к его гибели. Этот механизм действия особенно важен в самых тяжелых случаях, когда обычные антибиотики бессильны: при заражении крови, пневмонии, инфекциях у пациентов с ослабленным иммунитетом.
Однако и к этим мощным препаратам бактерии постепенно вырабатывают устойчивость. Микроорганизмы научились производить специальные ферменты, способные разрушать молекулы пептидных антибиотиков. Эта способность бактерий к адаптации заставляет ученых искать новые подходы к созданию лекарственных средств.
Что, если бы антибиотик мог стать невидимкой для систем защиты бактерий? Эта идея лежит в основе создания «зеркальных» версий антибиотиков, и она работает благодаря фундаментальному свойству молекул — хиральности. Многие молекулы, включая антибиотики, существуют в виде энантиомеров — пар «зеркальных двойников». Такие химические соединения имеют одинаковый химический состав, но разную пространственную организацию, подобно тому как левая и правая руки — зеркальные отражения, но они не взаимозаменяемы.
Ключевой принцип заключается в следующем: ферменты бактерий, ответственные за уничтожение антибиотиков, настроены на распознавание определенной пространственной структуры молекулы. Если бактерии научились обезвреживать «левую» версию антибиотика, то его «правая» зеркальная копия останется для них невидимой. Ферменты просто не смогут с ней взаимодействовать — механизм защиты окажется бесполезным.
К чистоте таких препаратов предъявляются особые требования: они не должны содержать примеси обычных молекул. Такие примеси в лучшем случае будут оказывать на организм дополнительную химическую нагрузку, а в худшем — приводить к нежелательным побочным эффектам.
Ученые Пермского Политеха провели исследование, чтобы найти лучший способ разделения «зеркальных» молекул для антибиотиков нового поколения. Они целенаправленно тестировали и сравнивали четыре различные системы, специально разработанные для разделения «зеркальных» молекул. Каждая из протестированных систем представляет собой металлическую колонку, содержащую особый наполнитель на основе соединений, способных распознавать и разделять левые и правые версии молекул. Эти системы, произведенные европейскими компаниями, ранее не сравнивались между собой в российских лабораториях. Статья опубликована в сборнике материалов межвузовской научно-практической конференции «Химия. Экология. Урбанистика», том 1 (Пермь, 2025 год).
В экспериментах через колонки пропускали растворы аминокислот — основных компонентов будущих антибиотиков. Разные «зеркальные» версии молекул проходили через наполнитель с разной скоростью, что позволяло их эффективно разделять. Этот метод открывает возможность контролировать чистоту лекарственных препаратов, что особенно важно для создания антибиотиков, которые бактерии не смогут распознать.
В ходе испытаний ученые обнаружили, что разные колонки лучше справляются с разными аминокислотами.
— Taurine-QN показала низкую эффективность для большинства аминокислот. АК-56 эффективно разделяла полярные аминокислоты — серин и аспарагиновую кислоту. Это особенно важно, поскольку L-форма серина необходима для построения тканей, а D-форма влияет на процессы обучения. Аналогично, L-форма аспарагиновой кислоты участвует в энергообмене, тогда как ее D-форма может нарушать гормональный баланс, — отмечает доцент кафедры «Химия и биотехнология» ПНИПУ, кандидат химических наук Леонид Аснин.
Chiral WCX-WAX успешно разделяла ароматические аминокислоты, например, фенилаланин: его L-форма служит основой для производства «гормона удовольствия» дофамина, а D-форма может быть опасна для организма.
— На АК-59 нам удалось достичь полного разделения энантиомеров всех исследованных аминокислот. При этом время анализа не превышало 10 минут, что критически важно для технологических процессов, — комментирует один из авторов работы, студентка кафедры «Химия и биотехнология» ПНИПУ Юлия Дмитриева.
Исследование пермских ученых позволит усовершенствовать и оптимизировать метод контроля качества фармацевтических препаратов. Это поможет создавать пептидные антибиотики, которые бактерии не распознают, улучшать действенность существующих лекарств и снижать их побочные эффекты.
Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Закладка
Скопировать ссылку
Email
Печать
Twitter
VK
Telegram
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Исследователи Центра декарбонизации АПК и региональной экономики Кабардино-Балкарского государственного университета имени Х.М. Бербекова совершили фундаментальное открытие, меняющее десятилетия устоявшихся представлений о жизнедеятельности растений. Ученые доказали, что корневая система растений способна напрямую поглощать диоксид углерода (CO₂) из почвы. Это вносит кардинальные изменения в понимание глобального углеродного цикла.
С приходом зимы и морозов многие из нас инстинктивно начинают кутаться в несколько свитеров, надевая на себя все самое теплое. Однако часто это не приносит желаемого результата: мы либо продолжаем мерзнуть, либо, наоборот, потеем и испытываем дискомфорт. Секрет комфорта в холодную погоду кроется не в количестве одежды, а в понимании фундаментальных законов физики, управляющих теплообменом. Чтобы разобраться в физике этого вопроса, мы обратились к Алексею Юрасову, доктору физико-математических наук, профессору кафедры наноэлектроники РТУ МИРЭА.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Испанские исследователи проанализировали популярные в соцсетях фото и видео с дикими животными, сгенерированные с помощью искусственного интеллекта. Специалисты пришли к выводу, что такого рода реалистичные, но фейковые материалы способны навредить как людям, так и животному миру, поскольку они вводят в заблуждение и подрывают усилия по сохранению дикой природы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.